O setor de telecomunicações constantemente se esforçou para fornecer velocidades mais altas e níveis mais baixos de latência quando se trata de soluções de conectividade para clientes de varejo, comercial e governamental. Tecnologias de satélite, introduzidas na segunda metade dos 20 TH century, have played an important role in providing communication services globally, especially when existing terrestrial infrastructure is weak.
Historically dominated by geosynchronous (GEO) satellite technology, the satellite communication market is now expected to shift towards Low Earth Orbit (LEO) satellite technology. LEO satellites are located approximately 50 times closer to Earth, and typically offer low latency (less than 30ms), coverage with relatively high throughput levels (approximately 100Mbps
By 2030, BCG estimates that the Middle East LEO satellite market will be valued at approximately $110 million
- LEO Satellites: An opportunity to bridge the connectivity divide?
- Driving Adoption: Unlocking value through B2B and B2G use cases?
- Beyond Connectivity: LEO satellites, a missing piece of a broader connected ecosystem?
LEO Satellites: An Opportunity to Bridge the Connectivity Divide?
The COVID-19 pandemic has forced the world to embrace digital transformation at an accelerated pace. However, the pandemic has also highlighted that billions of people remain without internet access, a universal right
Geographic accessibility and the high cost of building physical infrastructure (such as the laying of fiber optic cables) are two key barriers in providing ubiquitous broadband internet access. LEO satellites can address these challenges by providing global coverage and low latency broadband connectivity. Moreover, connecting to LEO satellites does not require large on-premise ground infrastructure – a portable end-user terminal, that can be self-assembled, is sufficient to gain access to the internet.
From a technology perspective, LEO is a viable solution to address the digital divide and provide accessibility, however, the business case for its commercialization is still weak. Notably, while subscription fees can be tailored to match market and profitability needs, the cost of end-user terminals is currently estimated to be at least $1,000 (approximately three times more expensive than GEO terminals and seven times more expensive than non-satellite modems). Experts believe that the beta version of end-user terminals released by Starlink in October 2020, at $499 per device, is heavily subsidized to drive adoption and while industry leaders are actively working on addressing this challenge, as seen in recent announcements from Starlink
BCG estimates that the cost of end-user terminals will reach approximately $130-300 per device by 2030, with the lower figure representing an optimistic scenario. Mapping against per capita personal disposable income across regions, and using Starlink’s beta release as a reference, shows that medidas adicionais (na forma de investimentos em P&D, subsídios ou implantação de Wifi da comunidade) são necessários para posicionar a tecnologia LEO como uma solução acessível para a ponte da conectividade Divide. Como o mercado ainda é nascente, as estimativas de consenso sobre seu crescimento e tamanho são difíceis de chegar, e o mercado tem o potencial de crescer a taxas ainda mais rápidas na próxima década. Espera -se que a maior parte do crescimento seja impulsionada pela tecnologia LEO, prevista que represente aproximadamente 40% do mercado geral até 2030, dada a sua alta qualidade de serviço e cobertura aprimorada em áreas onde a infraestrutura de conectividade terrestre não está facilmente disponível. Visão da Arábia Saudita 2030 ou Abu Dhabi Visão Econômica 2030.
Driving Adoption: Unlocking Value Through B2B and B2G Use Cases?
The global satellite communications service market is expected to reach $40 billion by 2030, growing at approximately 7% annually. As the market is still nascent, consensus estimates on its growth and size are difficult to arrive at, and the market has the potential to grow at even faster rates over the next decade. Most of the growth is expected to be driven by LEO technology, forecasted to account for approximately 40% of the overall market by 2030, given its high service quality and enhanced coverage in areas where terrestrial connectivity infrastructure is not easily available.
In addition to improvements in military capabilities for defense, Middle Eastern countries can leverage LEO technology for commercial and government use cases that contribute to the successful delivery of national transformation programs, such as Saudi Arabia’s Vision 2030 or Abu Dhabi Economic Vision 2030. focado principalmente na diversificação econômica e no desenvolvimento socioeconômico, esses programas normalmente incluem três elementos-tecnologia, transporte e conectividade-que podem se beneficiar diretamente da tecnologia LEO. adoção
In terms of technology, LEO can promote business digitalization and Internet of Things (IoT) adoption, particularmente no setor de petróleo e gás
Similarly, the transportation sector is proving to be a key enabler for economic and social activity, driven by the emergence of mega-city development projects such as NEOM. Governments have set ambitions to develop aerial, maritime, and inland transport infrastructure around these cities to develop logistics hubs as well as encourage tourism. A tecnologia Leo pode ajudar as transportadoras nacionais a capitalizar o aumento planejado no tráfego de passageiros
Finalmente, A tecnologia LEO pode fornecer conectividade aprimorada e permitir o desenvolvimento de megacidades e suas ambições digitais by providing an alternative that minimizes investment in-ground infrastructure, and by acting as a backup for always-on connectivity to ensure business continuity in the case of terrestrial infrastructure failure.
Beyond Connectivity: LEO Satellites, a Missing Piece of a Broader Connected Ecosystem?
Because of its CapEx intensive nature, we expect that the LEO satellite internet market will be highly concentrated and dominated by a handful of global players. Starlink, which launched its beta service in the US in late 2020, has the first-mover advantage, but it is expected to face competition from OneWeb and Telesat as they near the launch of their respective commercial operations
Despite this promising race, the LEO satellite business case remains uncertain given its broad range of underlying risks. First and foremost, since no full LEO constellation has been completed yet, the number of use cases remains limited. From a commercial perspective, the lack of awareness and potentially prohibitive prices, as a result of high end-user terminals cost, could translate into insufficient uptake or penetration of services. From a regulatory perspective, the compliance requirements imposed by the international community as well as local authorities could jeopardize service continuity.
Against this backdrop, rather than being established as a silo, we believe LEO technology should be leveraged to enable the development of connected business ecosystems for technology companies, owing to various adjacent strategic benefits. Por exemplo, fornecendo conectividade à Internet de alta velocidade, o SpaceX Starlink pode permitir carros conectados à Tesla e avançar no desenvolvimento de casos de uso, como veículos autônomos. Da mesma forma, o Project Kuiper poderia permitir vários serviços prestados pela Amazon, incluindo um crescimento adicional no mercado global de comércio eletrônico e alimentando a Amazon Web Services (AWS) com grandes volumes de dados capturados através de satélites, expandindo assim seus negócios de serviços em nuvem.
Além disso, como evidenciado pela aquisição de uma participação de 24% na OneWeb pela Eutelsat em abril de 2021
As established private players in the developed markets continue to compete in the LEO market, China could emerge as a disruptor with its own planned mega-LEO satellite constellation project anunciado em outubro de 2020 - ele apresentou um pedido na ITU por aproximadamente 13.000 satélites LEO. Essa rede poderia potencialmente promover a agenda estratégica nacional, regional (sudeste da Ásia) e global (África, América Latina) e promover o crescimento de empresas estatais (operando em veículos autônomos e mercados de comércio eletrônico, por exemplo).
Takeaways-chave para tomadores de decisão:
À medida que a tecnologia Leo surge como uma tecnologia proeminente, quatro desenvolvimentos e facilitadores previstos devem ser destacados para os países do Oriente Médio:
- Aplicações de curto-prazo do LEO são esperadas para o b2b ou o b2b ou o b-b2 ou o b-b2 ou o b-b2 ou b2b ou o b2b ou o b2b ou o b2b ou o b2b ou o b2b ou o b2b ou o b2b ou o b2b ou o b2b ou o b2B ou o b2B ou o b2B ou o b2B ou o b2b. Espera-se permanecer proibitivo no curto prazo, limitando a adoção em massa da conectividade baseada em LEO. Globalmente, enquanto a ênfase em P&D está sendo colocada na redução dos custos dos terminais do usuário final, os aplicativos B2C estão limitados a fornecer conectividade a áreas remotas em países com altos níveis de renda disponível. Seu escopo de ação se concentrou principalmente no estabelecimento e aplicação de uma estrutura regulatória que garante a lógica, o uso equitativo e eficiente de recursos de órbita de satélite em globalmente. Ao definir os princípios do uso do espectro da órbita para alocar slots orbitais e gerenciar o tráfego espacial, a ITU continua sendo a principal agência regulatória da tecnologia LEO. Prevemos que a UTU continue a melhorar seu escrutínio de novas aplicações para as órbitas de tecnologia Leo, pois os slots se tornam cada vez mais escassos. Por exemplo, o governo do Canadá finalizou um acordo de US $ 600 milhões com a Telesat em novembro de 2020 para entregar a Internet baseada em satélite Leo às áreas rurais do país. O governo do Reino Unido adquiriu uma participação de 45% na OneWeb em julho de 2020, depois que a empresa entrou em falência em meio à pandemia Covid-19. Dada a incerteza no mercado comercial, a aquisição governamental de serviços de comunicação por satélite continuará sendo um facilitador crítico da rede futura. Tecnologias disruptivas que capitalizam a revolução da conectividade iniciada por Leo. Os HAPs são estações de rádio localizadas na estratosfera, aproximadamente 20 km acima do nível do solo. Eles são compostos por um veículo aéreo não tripulado, bem como uma carga útil que abriga todo o equipamento de comunicação necessário para conectar os usuários na Terra. Os HAPs transmitem sinais da Internet para estações de terra, casas, locais de trabalho ou diretamente para dispositivos pessoais. While several HAPS projects have been canceled or put on hold by leading tech players failing to find a sustainable business model (such as Google’s Project Loon and Facebook’s Project Aquila), they have gained significant attention from global aerospace companies, including Lockheed Martin and Thales and Airbus, which are currently working on their development (e.g., Airbus’ Zephyr, Thales’ Alenia and Space's Stratobus). A próxima geração de satélites geográficos (VHTP) também emergirá como principais tecnologias para casos de uso de mobilidade, como transporte marítimo e aéreo. Assim, a revolução da conectividade global só poderia ser descrita como estando em sua infância com os satélites LEO, abrindo caminho para mais interrupções tecnológicas no futuro.
Thibault Werlé
End-user terminal and subscription pricing are expected to remain prohibitive in the near term, limiting mass adoption of LEO-based connectivity. Globally, while R&D emphasis is being placed on reducing costs of end-user terminals, B2C applications are limited to providing connectivity to remote areas in countries with high levels of disposable income.
- International inter-government organizations expected to regulate and enable the LEO technology
Established under the United Nations, ITU has emerged as a critical regulatory body for LEO technology. Its scope of action has primarily focused on establishing and enforcing a regulatory framework that ensures rationale, equitable and efficient use of satellite-orbit resources globally. From setting the principles of orbit spectrum use to allocating orbital slots, and managing space traffic, ITU remains the primary regulatory agency of LEO technology. We anticipate ITU to continue to enhance its scrutiny of new applications for LEO technology orbits as slots becoming increasingly scarce.
- Governments as ‘financial sponsors’ of satellite communication services
Beyond policies and regulations, governments have turned into ‘financial sponsors’, which strategically invest in LEO satellite companies to support their business case and enable their operations. For example, the Government of Canada finalized a $600 million agreement with Telesat in November 2020 to deliver LEO satellite-based internet to rural areas in the country. The United Kingdom’s government acquired a 45% stake in OneWeb in July 2020, after the company collapsed into bankruptcy amid the Covid-19 pandemic. Given the uncertainty in the commercial market, government acquisition of satellite communication services will remain a critical enabler of the future network.
- LEO satellites will pave the way forward for technological disruptions in the future
New technologies such as High-altitude Platform Systems, or pseudo-satellites (HAPS), including balloons, airships, and airplanes could emerge as disruptive technologies that capitalize on the connectivity revolution initiated by LEO. HAPS are radio stations located in the stratosphere, approximately 20km above ground level. They are composed of an unmanned aerial vehicle as well as a payload that houses all communication equipment required to connect users on Earth. HAPS transmit internet signals to ground stations, homes, workplaces, or directly to personal devices. While several HAPS projects have been canceled or put on hold by leading tech players failing to find a sustainable business model (such as Google’s Project Loon and Facebook’s Project Aquila), they have gained significant attention from global aerospace companies, including Lockheed Martin and Thales and Airbus, which are currently working on their development (e.g., Airbus’ Zephyr, Thales’ Alenia and Space's Stratobus).
Traditional technologies such as GEO will also continue to evolve and contribute to disrupting the overall connectivity ecosystem by establishing hybrid networks. Next-generation of GEO satellites (VHTP) will also emerge as leading technologies for mobility use cases such as maritime and air transport. Thus, the global connectivity revolution could only be described as being in its infancy with LEO satellites paving the way for more technological disruptions in the future.