JA

Regulando a próxima geração de satélites

Artigo 8 Min Read

Tecla toca

Os satélites de órbita de baixa terra (LEO) estão evoluindo rapidamente, com novas aplicações e enorme potencial de mercado. Os governos precisam da estrutura regulatória certa para capitalizar. Recompensas - criando clareza em duas áreas principais: 1) alocando o espectro de frequência e 2) estabelecendo padrões globais. Salvo para
  • The new satellites will not replace existing technology but complement it, offering seamless connectivity and adequate bandwidth anywhere in the world.
  • Thus far, only two main players compete worldwide, primarily because regulation is extremely burdensome.
  • Governments can support the new technology—and reap economic rewards—by creating clarity in two main areas: 1) allocating frequency spectrum, and 2) setting global standards.
Saved To Meu conteúdo salvo

O uso de satélites de órbita de baixa terra (LEO) está atingindo um ponto de inflexão, com o potencial de transformar a comunicação. Comparado aos satélites tradicionais, a tecnologia Leo oferece comunicação mais rápida e menor latência. Os próprios satélites são menores e mais baratos para construir e lançar - com custos projetados para continuar caindo. Milhares de satélites Leo de primeira geração já estão em órbita, mas novas versões estão chegando em maior número. Eles não substituirão os satélites existentes, mas os complementarão, criando uma solução híbrida que desbloqueará novos usos com base na conectividade perfeita em toda a Terra-mesmo nos locais mais remotos.

Low-Earth orbit satellites overcome the limitations of those in geostationary orbit high above the Earth.

Governos - para capitalizar nesta oportunidade - precisará criar a estrutura regulatória certa, oferecendo aos operadores de satélite um conjunto unificado de regras para tudo, desde a alocação de espectro até a remoção de detritos espaciais. O futuro da tecnologia de satélite é promissor, mas isso só ocorre com o nível certo de apoio coordenado do governo.

Uma nova solução para conectividade onipresente

The global satellite communications market is on track to reach $40 billion to $45 billion by 2030, according to our analysis, up from roughly $25 billion right now. LEOs are expected to contribute roughly 40% of the market at that point, primarily because they offer features that existing satellites do not. Until recently, most satellites’ usefulness has been limited by geostationary orbit (GEO) high above the Earth, offering slow, low-bandwidth connectivity for a small number of applications.

LEO satellites overcome these limits. They orbit at altitudes of 500 to 2,000 kilometers, a shortened distance to Earth that enables higher-speed, lower latency communication. Two pioneering constellations—Starlink and Eutelsat-OneWeb—already have more than 4,500 satellites in orbit, offering speeds of 25 to 150 Mbps and latencies of 25 to 60 milliseconds on land. The satellites launched by these and other players are first-generation LEO satellites that enable such uses as precision farming, fleet management, public transport, and direct-to-cell (D2C) text messaging over mobile phones. (The SOS service on iPhones already uses LEO satellites.)

The range of applications from LEO satellites is going to dramatically expand over the next five to ten years. During that time, the industry will deploy more advanced constellations using even better technology. For example, second-generation LEO satellites will have larger antennas and inter-satellite links (which transfer data directly between satellites) to provide signals that are five times faster than the current satellites and with half the latency and fewer ground stations. These upgrades will spur the development of new consumer and business applications. New players including Amazon Kuiper and Telesat, along with established companies like Starlink and Eutelsat-OneWeb, plan to launch over 45,000 new LEO satellites in total. Google and AT&T jointly invested $155 million in AST SpaceMobile to fund a constellation specifically to compete with established players. Other companies are making similar investments in LEO technology.

Longer term, third-generation satellites already in development plan to carry video calls, video streaming, and other data-rich applications. This massive expansion will enable a broader range of applications—we estimate at least 35 applications across 15 primary sectors, ranging from satellite-enabled broadband in remote areas to automotive connectivity, disaster response, wearable health-care solutions, and AR/VR applications. Collectively, those applications will create up to $20 billion of market value by 2030. (See Exhibit 1.)

Yet LEO satellite connectivity will not replace existing satellites. Rather, the goal is for multiple solutions to complement each other, with ground devices that can communicate with LEO satellites, terrestrial mobile networks, new technologies like high-altitude platform stations, and other telecom technologies. Ultimately, that will enable hybrid connectivity that uses the right technology at the right time. This convergence of technologies is crucial for realizing the vision of a fully connected world, with consumer and Aplicações industriais Isso capitaliza a comunicação contínua e a transferência de dados em qualquer lugar do planeta.

Várias tecnologias aprimoradas são necessárias para que esses aplicativos tenham sucesso. Uma é que os telefones celulares precisarão de diferentes tipos de antenas para acomodar as novas frequências de satélite, juntamente com maior energia da bateria para suportar o aumento das demandas de energia dos sinais de transmissão a distâncias mais longas aos satélites LEO. Sistemas - Leo, Geo e órbita de terra média (MEO) - subindo entre eles, conforme necessário para manter a conectividade constante. Esses terminais estão em desenvolvimento, mas são complexos e caros: projetados de US $ 10.000 a US $ 15.000 cada. Torná -los mais acessíveis e acessíveis exigirá P&D contínuo, e as economias de escala podem reduzir os custos à medida que a produção aumenta. Além disso, os subsídios do governo reduziriam o custo para os usuários finais, potencialmente como parte de um apoio financeiro público mais amplo. (Veja a barra lateral, “A evolução do financiamento das fontes do setor público para o privado.”)

Also required for this kind of always-on connectivity is a multiple-orbit terminal: a unit that sits in a factory, truck, or other satellite-connected piece of equipment on the ground and receives signals from multiple satellite systems—LEO, GEO, and medium Earth orbit (MEO)—switching among them as needed to maintain constant connectivity. These terminals are in development, but they are complex and costly: projected at $10,000 to $15,000 each. Making these more affordable and accessible will require continued R&D, and economies of scale could bring costs down as production increases. In addition, government subsidies would reduce the cost to end users, potentially as part of broader public financial support. (See the sidebar, “The Evolution of Funding from Public- to Private-Sector Sources.”)

The Evolution of Funding from Public- to Private-Sector Sources
The growth and success of the LEO satcom market require a long-term investment strategy. In the decade ahead, operators will need as much as $100 billion—four times the current level of investment. Satellite companies also have extremely high operating costs and are slow to become profitable. Several high-profile space startups backed by heavyweight venture capital have already struggled to maintain liquidity and been forced to cut their workforce.

For that reason, many governments have provided initial funding to get satellite programs up and running, such as the British government’s initial investment in OneWeb (prior to that company’s merger with Eutelsat). Such investment underscores the strategic reality that space capabilities are not just about economic returns but also about asserting national presence and influence—key elements of soft power in the geopolitical arena.

As the technology matures, the business case for LEO satcom could become more favorable. For example, SpaceX aims to slash launch costs by up to 90% and manufacturing costs by over 50%, Enhanced speeds, reduced latencies, and broader coverage will unlock new uses and revenue streams, transitioning subscriber counts from the millions to the billions. In this way, government funding is akin to seed capital for the overall industry, with private-sector players such as private equity firms becoming more interested over time, especially as GEN3 satellites come online with their promise of high-margin direct-to-consumer (D2C) applications.

Superando o desafio regulatório

The significant potential from LEO satellite technology—and the need to remain economically competitive with other countries—is likely to motivate governments to maintain a vibrant market. We believe that the biggest challenge is on the regulatory front. Satellite regulations have already been discussed in global events like the 2023 ENISA Telecom & Digital Infrastructure Security Forum and the World Radiocommunication Conference 2023. But because these are global applications, no single entity can regulate the entire industry. Instead, national governments may need to collaborate. Satcom operators today must navigate a complex web of national and international regulations to secure essential elements such as landing rights, service licenses, ground equipment, and ground station gateway licenses from individual regulators across the globe.

We believe that the biggest challenge to unleashing the potential of LEO satellite technology is from government regulations.

Essa complexidade é uma das principais razões pelas quais apenas dois jogadores de Leo-Starlink e Eutelsat-Oneweb-conseguiram alcançar a escala global. Ambos assinaram memorandos de entendimento com nações e alianças, incluindo a União Europeia. Mesmo com esses acordos em vigor, alguns países têm cuidado ao conceder licenças operacionais devido a preocupações com a soberania e a segurança cibernética. No final de 2023, o serviço Starlink estava disponível apenas em cerca de 40 países, e eutelsat-oneweb em cerca de metade, embora mais países estejam programados para começar a oferecê-lo em 2024 (consulte a Figura 2.)

Clareza regulatória em duas áreas pode levar a um progresso mais rápido para a indústria LEO: alocando o espectro e definição de padrões globais. Os reguladores podem reduzir esse risco repensando sua abordagem à alocação de espectro. Entidades globais como a União Internacional de Telecomunicações (ITU), que atualmente coordenam o compartilhamento de frequências globais na Terra, e o Escritório Nacional Unido de Assuntos Espaciais Sideral, juntamente com vários reguladores regionais e nacionais, podem precisar se reunir para estabelecer estruturas e padrões similares, como as frequências de satellite devem ser compartilhadas para mitigar o risco de interferência e a prática de concorrência saudável. Armazenamento, no qual os operadores da SATCOM reservam o espectro, mesmo que não tenham planos de usá -lo, simplesmente para bloquear seus concorrentes. (Alguns operadores têm um motivo legítimo para não usar seu espectro, como questões técnicas ou regulatórias.) A UTU já implementou regulamentos para conter essa prática, mas uma maior coordenação entre os reguladores nacionais e regionais pode ajudar a aplicar os padrões globais e a tornar os padrões globais 37, de forma mais ampla, os padrões globais: 3717

Allocating spectrum

The increasing number of satellites in LEO orbit creates a growing risk of interference across communication frequencies. Regulators can reduce this risk by rethinking their approach to spectrum allocation. Global entities like the International Telecommunications Union (ITU), which currently coordinates global frequency-sharing on Earth, and the United National Office for Outer Space Affairs, along with various regional and national regulators, may need to come together to establish frameworks and standards for how satellite frequencies should be shared to mitigate interference risk and foster healthy competition.

Similarly, frequency regulations should curb the practice of spectrum warehousing, in which satcom operators reserve spectrum even if they have no plans to use it, simply to block their competitors. (Some operators have a legitimate reason for not using their spectrum, such as technical or regulatory issues.) The ITU has already implemented regulations to curb this practice, but greater coordination among national and regional regulators could help enforce them and make underutilized spectrum bands more widely available.

Setting global standards

In addition to frequency allocation, oversight will need to shift from largely national regulations to a unified global regulatory framework. Such a framework could address key issues, such as:

 


 

Satellite technology has put the communications industry at the edge of a connectivity revolution. Despite technological advances, the long-term success of the industry hinges on strategic investments and—more critically—the right regulatory support from governments. Through this approach, countries can capitalize on LEO satellites to integrate with other communications technologies and create a globally connected, technologically advanced future.

Raed Saab, Faisal Alsayed and Rami Suleiman contributed to this publication.

Subscribe to receive the latest insights on Technology, Media, and Telecommunications.

Autores

Diretor e parceiro gerente

Thibault Werlé

Diretor Gerente e Parceiro
Toronto

Diretor Gerente e Parceiro

Faisal Hamady

Diretor Gerente e Parceiro
Dubai

Líder do projeto

Hamza Najmi

Líder do projeto
Dubai

Conteúdo relacionado

Salvo para Meu conteúdo salvo
Salvo para Meu conteúdo salvo