JA

Um impulso liderado pela inovação para a fabricação dos EUA

por= Justin Rose, Rahul choraria e Hal Sirkin
Artigo

If any one factor explains why the US has remained the world’s innovation powerhouse since World War II, it is the country’s overwhelming leadership in research and development. This commitment, combined with a passion for taking risks, underpins America’s ability to create more intellectual property than any other economy and has spawned many new industries, including semiconductors, computers, aerospace, and digital telecommunications. Continued US R&D investments—some $7.1 trillion from 1995 to 2015—have enabled the US to remain at the forefront of such fields as advanced materials, energy, and biopharmaceuticals.

Dive deeper into the latest data on R&D spending, however, and continued US leadership in industrial innovation looks far less secure. The US remains dominant at the front end of R&D: the nation invests three times as much as any other economy in basic research, which focuses on the pursuit of scientific knowledge, and applied research, which turns discoveries into technologies useful to industry. (See Exhibit 1.) Breakthroughs in physics and material sciences, for example, have led to the digital technologies that have revolutionized virtually every industry.

Mas a imagem é diferente quando se trata do back -end da cadeia de P&D - pesquisa de desenvolvimento, que traduz o novo conhecimento de pesquisas básicas e aplicadas em produtos comerciais e processos de fabricação. A China superou recentemente os EUA como o maior gastador nessa área. Em mais cinco anos, a China investirá até o dobro do que os EUA em pesquisa de desenvolvimento, assumindo que ambas as economias mantenham seu recente ritmo de crescimento de gastos. (Consulte Anexo 2.)

preocupações que a liderança global da Inovação está e se enquadram em chamadas de tanques de reflexão e comissões de ribbonas azuis para aumentar a remuneração dramática de dramaticamente. Muitas dessas propostas têm mérito, e várias iniciativas dos EUA para apoiar a manufatura lançadas desde a crise financeira de 2008-2009 mostram promessas. Grandes novas infusões de dinheiro federal, no entanto, são difíceis de sustentar. E os orçamentos maiores de P&D por si só não abordarão os principais problemas enfrentados pelo setor manufatureiro da América, se a maneira como esses fundos forem gastos não mudar. Uma fonte de atrito ocorre entre a academia e a indústria privada. A participação do leão na pesquisa básica e aplicada é financiada pelo governo federal e conduzida nas universidades, enquanto a indústria se concentra predominantemente na pesquisa de desenvolvimento. Enquanto muitas empresas participam de consórcios de pesquisa público-privados dedicados ao desenvolvimento de novos processos, a relutância em colaborar totalmente geralmente resulta em soluções muito estreitas para atender às necessidades de indústrias americanas inteiras ou que não são divulgadas amplamente por meio de cadeias de suprimentos de fabricação. Nossa análise indica que há um potencial significativo para os EUA gerarem muito mais inovação de produtos e processos a partir de seus investimentos em pesquisas básicas e aplicadas, simplificando os “adaptadores” existentes, como universidades, para vincular pesquisas acadêmicas financiadas pelo governo à indústria privada. Nós universidades de pesquisa nos EUA podem

There is a lot of friction in the US innovation system that slows the translation of scientific and technology breakthroughs into commercial products and processes. One source of friction occurs between academia and private industry. The lion’s share of basic and applied research is funded by the federal government and conducted at universities, while industry focuses overwhelmingly on development research.

Friction among companies, meanwhile, slows innovation on advanced manufacturing processes. While many companies participate in public-private research consortia devoted to developing new processes, a reluctance to fully collaborate often results in solutions that are too narrow to meet the needs of entire US industries or that are not disseminated widely enough through manufacturing supply chains.

What can the US do to get more economic bang from the immense sums it already invests in R&D? Our analysis indicates that there is significant potential for the US to generate much more product and process innovation from its investments in basic and applied research by streamlining existing “adapters,” such as universities, for linking government-funded academic research to private industry. US research universities can Acelere a inovação do produto reduzindo o atrito e servindo como melhores pontes entre a academia e a indústria. Os consórcios de pesquisa também podem ser adaptadores produtivos para o desenvolvimento de processos inovadores de fabricação se as empresas melhorarem a maneira como colaboram. Essa colaboração é especialmente crítica se a indústria dos EUA competir com outras nações na implantação de sistemas avançados de fabricação da indústria 4.0, como robôs autônomos, máquinas de fabricação aditivas e ferramentas de simulação digital. (Ver " Por que a fabricação avançada aumentará a produtividade , ”BCG Artigo, janeiro de 2015.)

We estimate that accelerating product and process innovation in the US can boost annual manufacturing output by more than 5%, or around $100 billion. (See Exhibit 3.) Even more important, it could create a virtuous circle of ongoing productivity improvement and output growth.

Liderança de P&D da América em perspectiva

American competitiveness in industrial innovation rests on a powerful base. From 1995 to 2015, the US has invested around $7.1 trillion in total R&D, about 2.5 times as much as China, the next biggest spender. (See Exhibit 4.) Even though the annual R&D investment gap has narrowed dramatically over the past decade, the estimated $500 billion that the US spent in 2015—around 2.8% of GDP—was nearly one-third more than what China spent (on a purchasing power parity basis), three times as much as Japan, and about four-and-a-half times as much as Germany, according to estimates by the Industrial Research Institute (IRI), an organization of corporate and federally funded research organizations. One-third of US R&D spending is dedicated to basic and applied research, a far higher share than in other industrial economies.

Another big advantage for the US is its university system, which directs more than $65 billion in research annually and marshals the expertise of some 450,000 graduate students and research assistants in science and technology fields. The US is home to 75 of the world’s 200 highest-rated universities and to more than 100 universities that conduct research at the highest level. Indeed, the US university system is a valuable resource for the entire world: academics in Japan, South Korea, China, France, and other industrial economies cite US publications far more than the other way around. According to a recent survey of global researchers by IRI, most believe that the quality and productivity of R&D remain far superior in the US than in China and most other major trade partners.

The US has struggled in recent decades, however, to translate technological breakthroughs into domestic manufacturing. Flat-panel displays, lithium ion batteries, digital mobile handsets, notebook computers, and photovoltaic cells and panels are all examples of products created with technologies that were invented in the US but largely industrialized elsewhere. While low production costs in East Asia have been one of the major factors accounting for this phenomenon, another is the fact that governments and companies in other industrial economies have focused far more heavily on developing and disseminating applications to local manufacturers as a matter of national industrial policy. Development accounts for 84% of China’s total R&D spending, for example. Over the past decade, Chinese spending on development rose by a compound annual growth rate of around 20%, compared with 5% in the US. In 2003, the US spent four times as much as China on development research; in 2013, the two nations spent roughly equal amounts.

Of course, China is hardly alone in focusing on development. Other nations that have made advanced manufacturing a high priority—including Germany, Japan, and South Korea—are also moving more aggressively to translate technological advances into new commercial products and next-generation processes. Because scientific and technological knowledge travel quickly around the world—while development tends to remain close to where the goods are produced—the US has essentially been subsidizing innovation in other economies that have made advanced manufacturing a high priority.

Academic research in other economies is also more aligned with the interests of manufacturing industries. In the US, contributions by the private sector account for less than 5% of university R&D budgets. In South Korea, companies contribute 11%. In Germany, that figure is 14%; in Russia, 27%; and in China, 34%. (See Exhibit 5.) What’s more, academic research in the US focuses less on the needs of manufacturing industries than such research in other economies does. Just 11% of US academic research publications relates to engineering. In China, 38% of all published research is about engineering. (While comparable data on academic engineering research is not available for China, it can be assumed that universities account for most of it.)

Impediments to Commercialization

We identified the key obstacles to converting basic and applied academic research into new products and processes—and more domestic manufacturing—through our interviews with several experts in US industry who have direct experience working with universities and research consortia.

The following sources of friction between academia and industry were cited as some of the strongest impediments to translating university research into innovative products:

The experts we interviewed also observed that several types of friction among companies hindered efforts to translate research into process innovation through R&D consortia:

If companies and research organizations can address these frictions, the US can more efficiently commercialize government-funded research and boost manufacturing growth.

Reducing Friction to Accelerate Product Innovation

The US already has an infrastructure for translating academic research into new products. For example, most major US research universities—and even national laboratories—have technology licensing offices, entrepreneurship training programs, and small-business incubators. Many also have research parks on or near their campuses where industry executives and academics can work together.

But manufacturers could generate more product innovation from federally funded research if friction between academia and industry were reduced and adapter mechanisms at universities were improved in the following ways:

Academic institutions could reduce friction in collaborative research by adopting a more rigorous, disciplined, and transparent program management process. For years, the private sector has used program management tools to understand and manage massively complex projects with uncertain outcomes. In our experience, such tools have been able to improve the probability of successful outcomes from as little as 25% to more than 80%. A consistent program management process can also increase visibility into the R&D pipeline and help align a company’s commercialization efforts with a project’s timeline. (See  Gerenciamento de Iniciativa Estratégica: o PMO Imperativo , Relatório do BCG, novembro de 2013.)

Aumentar a inovação do processo por meio de consórcios

Os EUA têm décadas de experiência com consórcios de pesquisa público-privados nos quais universidades, empresas industriais e laboratórios governamentais desenvolvem e disseminam novos processos de fabricação. Por exemplo, a Sematech, um consórcio de fabricação de semicondutores criado em 1987 e financiado em parte pelo Departamento de Defesa dos EUA, forneceu apoio crucial ao desenvolvimento de tecnologias, materiais e projetos de litografia de próxima geração que facilitaram o ressurgimento da América em semicondutores. E, desde 2014, o Instituto Nacional de Padrões e Tecnologia (NIST) lançou 14 consórcios de P&D com universidades em todo o país. Esses consórcios se concentram na inovação em áreas como fabricação e design digitais, fabricação aditiva, fotônica e sistemas de energia renovável. Acreditamos que ganhos significativos podem ser alcançados se os consórcios se concentrarem no desenvolvimento de processos que tenham aplicações mais amplas em setores inteiros. Isso será especialmente crítico na era da indústria 4.0. Enquanto os EUA estão na vanguarda tecnológica da indústria 4.0, algumas nações, incluindo a Alemanha e a China, estão se movendo de forma mais agressiva para adotá -las. (Veja

The record of US consortia has been mixed, however. We believe that significant gains can be achieved if consortia focus on developing processes that have wider applications across entire industries. This will be especially critical in the era of Industry 4.0. While the US is at the technological forefront of Industry 4.0, some nations, including Germany and China, are moving more aggressively to adopt them. (See Hora de acelerar na corrida em direção à indústria 4.0 , BCG Focus, maio de 2016.)

Consortia pode ser mais eficaz, fazendo com que os membros trabalhem um ao lado do outro em instalações dedicadas, trazendo fornecedores como membros e, ao redor do treinamento, o que desejam ingressar na indústria de fabricação qualificada. Adoção das tecnologias da indústria 4.0 pelos fabricantes dos EUA, a pesquisa consórcia deve se concentrar no desenvolvimento de soluções abrangentes que podem ser adotadas pelos ecossistemas de fornecedores de indústrias inteiras. Ao espalhar os custos por vários provedores e usuários de soluções, um consórcio pode resolver problemas que estariam além das capacidades tecnológicas e meios financeiros de participantes individuais. Ele poderia harmonizar os padrões e as regras de design para que as soluções e ferramentas digitais sejam compatíveis e possam ser prontamente integradas, reduzindo assim o custo e o tempo necessários para a implementação. Um consórcio com foco na cadeia de suprimentos digitais automotivos, por exemplo, poderia reunir OEMs, fornecedores de nível One e outros parceiros para desenvolver soluções para realidade aumentada, impressão 3D, robótica avançada e gerenciamento de fábrica digital. O AirDesign é um exemplo de como essa abordagem está sendo aplicada na indústria de aeronaves. Airdesign é uma plataforma de colaboração de design e fabricação criada por Dassault Systèmes e Boostaerospace para fabricantes aeroespaciais e de defesa europeus.

The Payoff from Greater Industrial Innovation

We believe that the actions we have outlined above require only modest additional investments by industry, university, and government. That is because we essentially are calling for improving the “software” of the existing US industrial innovation system, rather than adding expensive new “hardware” in the form of new programs and bureaucracies.

The required investments are especially modest when compared with the potential impact. We believe that, in addition to boosting annual manufacturing output, increased industrial innovation can create a virtuous circle that will reinforce ongoing productivity improvement, output growth, and further R&D investment. Improved global cost-competitiveness and the arrival of advanced Industry 4.0 manufacturing technologies have presented the US industry with one of its best opportunities in decades to reset the game. Now the US needs to seize the opportunity by taking the actions needed to get the most value from its immense research assets.

Acknowledgments

This report would not have been possible without the efforts of Ben Brabston, Cassandra Grafstrom, and Doug Kochelek. We thank Pete Engardio for his help in writing this report, as well as Katherine Andrews, Gary Callahan, Lilith Fondulas, Kim Friedman, Abby Garland, and Sara Strassenreiter for their contributions to its editing, design, and production.

Authors

Alumnus

Justin Rose

Alumnus
Hs

Alumnus

Hal Sirkin

Alumnus

Conteúdo relacionado

Salvo para Meu conteúdo salvo
Saved To Meu conteúdo salvo
Download Artigo